fuzzy control charts for variable and attribute quality characteristics
Authors
abstract
this paper addresses the design of control charts for both variable ( x chart) andattribute (u and c charts) quality characteristics, when there is uncertainty about the processparameters or sample data. derived control charts are more flexible than the strict crisp case, dueto the ability of encompassing the effects of vagueness in form of the degree of expert’spresumption. we extend the use of proposed fuzzy control charts in case of linguistic data using adeveloped defuzzifier index, which is based on the metric distance between fuzzy sets.
similar resources
FUZZY CONTROL CHARTS FOR VARIABLE AND ATTRIBUTE QUALITY CHARACTERISTICS
This paper addresses the design of control charts for both variable ( x chart) andattribute (u and c charts) quality characteristics, when there is uncertainty about the processparameters or sample data. Derived control charts are more flexible than the strict crisp case, dueto the ability of encompassing the effects of vagueness in form of the degree of expert’spresumption. We extend the use o...
full textFuzzy rules for fuzzy $overline{X}$ and $R$ control charts
Statistical process control ($SPC$), an internationally recognized technique for improving product quality and productivity, has been widely employed in various industries. $SPC$ relies on the use of control charts to monitor a manufacturing process for identifying causes of process variation and signaling the necessity of corrective action for the process. Fuzzy data exist ubiquitously in the ...
full textNonparametric Shewhart-type Quality Control Charts in Fuzzy Environment
Nonparametric control charts are presented in order to figure out the problem of detecting changes in the process median (or mean), or changes in the variability process where there is limited knowledge regarding the underlying process. When observations are reported imprecise, then it is impossible to use classical nonparametric control charts. This paper is devoted to the problem of c...
full textMultivariate Fuzzy Multinomial Control Charts
Abstract: Two approaches for constructing control charts to monitor multivariate attribute processes when data set is presented in linguistic form are suggested. Two monitoring statistics 2 f T and are developed based on fuzzy and probability theories. The first is similar to the Hotelling’s statistic and is based on representative values of fuzzy sets. The distribution of statistic, being a li...
full textFuzzy Short-Run Control Charts
Statistical control charts are useful tools in monitoring the state of a manufacturing process. Control charts are used to plot process data and compare it to the limits set for the process. Points plotting outside these limits indicate an out-of-control condition. Standard control charting procedures, however, are limited in that they cannot take into account the case when data is of a fuzzy n...
full textSensitizing Rules for Fuzzy Control Charts
Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of fuzzy systemsPublisher: university of sistan and baluchestan
ISSN 1735-0654
volume 3
issue 1 2006
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023